Bl
Bl
Bl
Bl
Bl
You are here:   Home »  Products »  PolyTrans|CAD+DCC  
Bl

Home > Supported File Formats > Fusion 360 to Universal Scene Description


How to convert Fusion 360 to Universal Scene Description (.usd,.usda, .usdc.usdz)?


PolyTrans|CAD+DCC performs mathematically precise CAD, DCC/Animation, GIS and BIM 3D file conversions into all key downstream 3D packages and file formats. Okino software is used and trusted throughout the world by many tens of thousands of 3D professionals in mission & production critical environments, backed by respectable personal support directly from our core development team.

     

Fusion 360

Fusion 360 is a cloud-based CAD, CAM, CAE design software application, developed by Autodesk. It was first introduced in 2013. It has built-in capabilities to do 3D modeling, simulation and documentation. It can manage manufacturing processes such as machining, milling, turning and additive manufacturing. It also has electronic design automation (EDA) features, such as schema design, PCB design and component management.

Converting from Fusion 360 into Okino software can be handled by one of many file formats, such as: Autodesk Inventor .ipt, DXF/DWG, FBX, IGES, OBJ, SAT, SketchUp or STEP AP214. STEP is preferable.

Converting from Okino software into Fusion 360 can be handled in one of many ways, such as: FBX, Rhino .3dm, DXF/DWG (not recommended), Wavefront OBJ and SketchUp SKP.

     

Universal Scene Description

The USD format (“Universal Scene Description”) is an open 3D model and scene format designed for efficient storage and streaming of 3D asset data. It is a high-performance extensible framework and ecosystem for describing, composing, simulating, and collaboratively navigating and constructing 3D scenes. An extensive overview of USD is provided in the Okino USD documentation.

Pixar Animation Studios originally created the USD platform (as its fourth generation variation after its Marionette & Preso systems) to improve studio-wide collaborative workflows. USD provides a concept of "scene composition", building a unified scene from potentially thousands of loosely-coupled source assets. For example, the mesh, rigging, materials, and animation for a single model might all come from different "layers" (files), each created and maintained by a different artist or department. Layers can store multiple "variants" of any given data, helping to solve problems of versioning/approval. The coupling between layers is very dynamic and loose, allowing for greater flexibility during the production process. The entire USD system is designed to facilitate a large studio making feature films, with all of the scale that that implies.

USD should be considered more of a code framework (“OpenUSD”) for use in group collaboration, to help with the aggregation of various 3D data sources into a unified scene through a process referred to as scene composition. A subset of that code framework provides for reading and writing USD disk-based files as well as rendering USD scenes (Hydra). The system is rather complex to implement (for software developers) and to use (from first principles) as a 3D graphics artist. The USD file format itself is not for faint of heart and is best read/written using the OpenUSD SDK + various programming APIs. More commonly used ASCII 3D file formats such as COLLADA, VRML2 and Wavefront OBJ are much easier to manipulate/understand/use on a human level basis.

File extensions used by the standard include:

  • .usd, Either ASCII or binary-encoded
  • .usda, ASCII encoded
  • .usdc, Binary encoded
  • .usdz, Zero-compression, unencrypted zip file